Degradation and drug release in calcium polyphosphate bioceramics: an MRI-based characterization.

نویسندگان

  • J M Bray
  • M J Filiaggi
  • C V Bowen
  • S D Beyea
چکیده

Degradable, bioceramic bone implants made of calcium polyphosphate (CPP) hold potential for controlled release of therapeutic agents in the treatment of localized bone disease. Magnetic resonance imaging techniques for non-invasively mapping fluid distribution, T(1) and T(2) relaxation times and the apparent diffusion coefficient were performed in conjunction with a drug elution protocol to resolve free and bound water components within the material microstructure in two CPP formulations (G1 and G2). The T(2) maps provided the most accurate estimates of free and bound water, and showed that G1 disks contained a detectable free water component at all times, with drug release dominated by a Fickian diffusion mechanism. Drug release from G2 disks was characterized by a combined diffusional/structural relaxation mechanism, which may be related to the gradual infiltration of a free water component associated with swelling and/or chemical degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramic Materials for Administration of Potent Drugs

Cai, B. 2015. Ceramic Materials for Administration of Potent Drugs. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1235. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9188-8. This thesis aimed to investigate and document the potential of applying ceramics in two specific drug delivery applications: tamper-resistant opioid fo...

متن کامل

Formulation and In Vitro Evaluation of Acyclovir Mucoadhesive Microspheres for Intravaginal Application

The purpose of the research was to formulate microspheres of acyclovir (ACV) using mucoadhesive polymers, sodium alginate and chitosan. Calcium chloride was used as the ionotropic gelling agent. Sodium alginate was crosslinked by calcium chloride leading to a slower release of the drug. Chitosan which is a cationic polymer interacted with sodium alginate, an anionic polymer, to form an interpol...

متن کامل

Formulation and In Vitro Characterization of Xanthan Gum-Based Sustained Release Matrix Tables of Isosorbide-5- Mononitrate

In the present investigation an attempt has been made to increase therapeutic efficacy, to reduce frequency of administration and to improve patient compliance by developing a sustained release matrix tablets of isosorbide-5-mononitrate. Sustained release matrix tablets of isosorbide-5-mononitrate were developed by using different drug: polymer ratios, such in F1 (1:0.75), F2 (1:1), F3 (1:1.5),...

متن کامل

Formulation and In Vitro Characterization of Xanthan Gum-Based Sustained Release Matrix Tables of Isosorbide-5- Mononitrate

In the present investigation an attempt has been made to increase therapeutic efficacy, to reduce frequency of administration and to improve patient compliance by developing a sustained release matrix tablets of isosorbide-5-mononitrate. Sustained release matrix tablets of isosorbide-5-mononitrate were developed by using different drug: polymer ratios, such in F1 (1:0.75), F2 (1:1), F3 (1:1.5),...

متن کامل

Physically Targeted Intravenous Polyurethane Nanoparticles for Controlled Release of Atorvastatin Calcium

Background: Intravenous drug delivery is an advantageous choice for rapid administration, immediate drug effect, and avoidance of first-pass metabolism in oral drug delivery. In this study, the synthesis, formulation, and characterization of atorvastatin-loaded polyurethane (PU) nanoparticles were investigated for intravenous route of administration. Method: First, PU was synthesized and charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2012